

PRINCETON UNIVERSITY

*Reconstruction***,** *Optimization and Simulation* **of Dynamic LiDAR Point Clouds**

Zehan Zheng

Dec 6, 2024

About Me - Zehan Zheng

- Master's Student @ Tongji University
- Research Interest: **3D Computer Vision**

Point Clouds

Neural Rendering

Dynamic Reconstruction

Generative Models

Autonomous Driving

Home Page:*https://dyfcalid.github.io*

Dynamic Reconstruction

Flow Optimization Pose Optimization Novel View Synthesis & Simulation

LiDAR4D [CVPR'24]

■ **Dynamic Point Clouds**

Some Examples!

■ **Dynamic Point Clouds**

point cloud sequence $\{P_0, P_1, \ldots, P_M\}$, $P_i \in \mathbb{R}^{N \times 3}$

We humans can understand it easily, but computers are not

3D Point Cloud – *Simple and Effective*

- Discrete
- Irregular
- Unordered
- No correspondence

Frame1: [[0.44,0.13,0.28], [0.97,0.62,0.15], [0.51,0.79,0.47], …] Frame2: [[0.12,0.75,0.47], [0.01,0.71,0.33], [0.82,0.19,0.05], …]

■ Point Cloud Interpolation

Challenges

- **Sparsity** both in spatial and temporal domain (limited to the sensors)
- **Point Cloud Structure**

cannot interpolate **directly**

(Irregular, unordered, and hard to find correspondences between frames)

• **Nonlinear Motion**

cannot use one simple formula

(i.e. dynamic human / vehicle motions)

■ **Point Cloud Interpolation**

Large amount of nonlinear complex motion in the real-world scenarios

■ **Point Cloud Interpolation**

Interpolate k frames Given the point cloud sequence $\{P_0, P_1, \ldots, P_M\}$, $P_i \in \mathbb{R}^{N \times 3}$

Low Frame Rate **Letter Community Report Rate** High Frame Rate

between every two frames

We can understand because we have the **prior**:

The shape and motion are **continuous**

- 4D (x, y, z, t) Spatio-temporal Neural Field
	- Establish mapping: *Coordinate Field* \mathbb{R}^4 *Motion Field* \mathbb{R}^3
	- Use *Interpolation Time* to control the output

Optimization at Runtime

⚫ **Multi-frame Integration**

Optimization at Runtime

⚫ **Self-supervised Losses**

■ **Chapter Distance Loss**
$$
\mathcal{L}_{CD} = \frac{1}{N} \sum_{\hat{p}_i \in \hat{P}} \min_{p_i \in P} \|\hat{p}_i - p_i\|_2 + \frac{1}{N} \sum_{p_i \in P} \min_{\hat{p}_i \in \hat{P}} \|p_i - \hat{p}_i\|_2
$$

Example 1 Earth Mover's Distance Loss
$$
\mathcal{L}_{EMD} = \min_{\phi: \hat{P} \to P} \frac{1}{N} \sum_{\hat{p} \in \hat{P}} ||\hat{p} - \phi(\hat{p})||_2
$$

◼ Smoothness Loss

Overall Loss	$\Psi = \alpha \mathcal{L}_{CD} + \beta \mathcal{L}_{EMD} + \gamma \mathcal{L}_{S}$
$\mathcal{L} = \sum_{P_i \in S} \sum_{t_j \in T} \Psi \left(P_{t_j}, \hat{P}_i^{t_j} \right)$	

⚫ **Runtime optimization**

Optimization at Runtime

⚫ **Runtime optimization & Inference**

- **Method** ✓ Multi-frame point cloud interpolation algorithm
	- \checkmark Deal with both the indoor and outdoor scenarios

NeuralPCI

PRINCETON

UNIVERSITY

- \checkmark Integrate motion information implicitly over space and time
- \checkmark Output point cloud frames at the arbitrary given time
- \checkmark Flexible unified framework for interpolation and extrapolation

PRINCETON UNIVERSITY

Experiments

Results on NL-Drive Dataset

NeuralPCI

Neural field is awesome!

- ⚫ Convert **explicit** point clouds into **implicit** neural fields
- ⚫ Reconstruct multi-frame point clouds with **unified** and **continuous** representations
- ⚫ Optimize motion in a **self-supervised** manner
- ⚫ Benefit from the **fitting ability** and **smoothness** of MLP

Limitation & Assumption

- ⚫ We assume the point clouds relatively complete
- ⚫ We assume the point clouds are object-centric

What if …

⚫ Incomplete and partial point clouds

Large-scale Dynamic Scene Reconstruction

● Scene-centric point clouds (world coordinate system)

LiDAR Point Clouds

- ⚫ LiDAR serves as the crucial sensor of autonomous driving for accurate 3D perception
- ⚫ Sparsity and occlusion
- Varying at different locations and times
- ⚫ Costly acquisition for a large-scale dataset
- ⚫ Limited to specific sensor configuration and ego-vehicle trajectory

How can we generate/synthesize novel point clouds?

Previous Methods

- ⚫ Physical-based Simulation
	- ╳ Costly 3D assets
	- ╳ Domain gap
- ⚫ Generative Models
	- ╳ Hard to control/edit
	- \times Poor generalization
- Scene Reconstruction
	- \checkmark Realistic
	- ✓ Precise control

CARLA: An open urban driving simulator

(b) (Conditional) Point Cloud Generation

(a) Sparse to Dense Point Cloud Completion

Learning Compact Representations for LiDAR Completion and Generation

LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World

Previous Methods

● Scene Reconstruction

Differentiable Rendering

╳ Complicated

╳ Limited to static scenes

How to deal with dynamic scenarios?

Novel Space-time View LiDAR Synthesis

Input

- LiDAR point cloud sequence $S = \{S_0, S_1, \ldots, S_{n-1}\}\$
	- $(S_i \in \mathbb{R}^{N \times 4}$, including intensity)

PRINCETON

UNIVERSITY

- sensor poses $P = \{P_0, P_1, ..., P_M\}$ $(P_i \in SE(3))$
- timestamps $T = \{t_0, t_1, ..., t_{n-1}\}$ $(t_i \in \mathbb{R})$

Output

• LiDAR point cloud S_{novel} given novel pose P_{novel} and novel time t_{novel}

However, challenges remain …

- **Large-scale reconstruction**
	- Scenes spanning hundreds of meters
	- Representation resolution
	- Sparsity of point clouds
- **Dynamic scenarios**
	- Long-distance vehicle motion
	- Temporal consistency
- **Generation realism**
	- Intensity reconstruction
	- Ray-drop characteristic

Method — LiDAR4D

- ✓ Differentiable LiDAR-only framework for novel space-time LiDAR view synthesis
- \checkmark Geometry-aware and time-consistent large-scale dynamic reconstruction
- \checkmark Better generation realism with global refinement

- **Hybrid Representation**
	- Planes & Hash Grids
	- Coarse-to-fine Resolution
	- 4D Decomposition

LiDAR4D (w/Hybrid Representations)

LiDAR-NeRF (Hash Grid only)

GT

4D Hybrid Representation

Hash Grid Feature

- **Hybrid Representation**
- **Scene Flow Prior**
	- Flow MLP
	- Geometry-aware Constraint (Chamfer Distance)
	- Temporal Feature Aggregation

LiDAR-NeRF (point-wise ray-drop)

LiDAR4D (w/ray-drop refinement)

GT

- **Hybrid Representation**
- **Scene Flow Prior**
- **Neural LiDAR Fields**
	- Separate MLPs for Depth/Intensity/Ray-drop
	- Global Optimization for Ray-drop Refinement via U-Net

Novel Space-time View LiDAR Point Clouds

• **SOTA Results**

• KITTI-360

Table 1. Quantitative comparison on KITTI-360 dataset. We compare our method to different types of previous approaches and color the top results as **best** and **second best** \mathcal{E} : Explicit, \mathcal{I} : Implicit, \mathcal{S} : Static, \mathcal{D} : Dynamic, \mathcal{M} : Mesh.

• NuScenes

Table 2. Quantitative comparison on NuScenes dataset. The notations are consistent with the KITTI-360 Table 1 above.

• More Comparisons Depth reconstruction on dynamic vehicles

• **More Comparisons**

Even on small objects

Also the intensity reconstruction • **More Comparisons**

- **More Comparisons**
	- ✓ LiDAR4D achieves much better *dynamic* reconstruction results

LiDAR4D

- ⚫ Take advantages of **explicit** and **implicit** representations (hybrid one)
- ⚫ Differentiable rendering for end-to-end optimization
- ⚫ Geometry-aware and time-consistent reconstruction
- ⚫ Without bounding box labeling of dynamic objects

Minimal Human Supervision

Can we further reduce the need for ground-truth, e.g., the sensor poses?

■ Pose-free Reconstruction

- ⚫ Related works in image reconstruction
- ⚫ Domain gap between images and point clouds

BARF: Bundle-Adjusting Neural Radiance Fields NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior

■ **Point Cloud Registration**

- ⚫ Poor Generalization
- ⚫ Trapped in Local Optima
- ⚫ Error Accumulation

Pair-wise

Geometric Transformer for Fast and Robust Point Cloud Registration

Robust Multiview Point Cloud Registration with Reliable Pose Graph Initialization and History Reweighting

Multi-view

Method - GeoNLF

- ⚫ Gradient flow to Poses
- ⚫ Bundle Adjustment
- ⚫ Global Optimization

However, optimizing the geometry and poses simultaneously is very tricky

Chamfer Distance and Normal loss of rendered point clouds

Method - GeoNLF Introduce Geometry Guidance

Method - GeoNLF

Pose Initialization with Random Perturbation

(a)Nuscenes

PRINCETON

UNIVERSITY

 (b) KITTI-360

Initial

Ours

Pose Initialization with Identity Matrix

Initial

Pose-free Reconstruction (NVS)

GeoNLF (Ours)

Geotrans-assisted

HASH-LN

BARF-LN

GeoNLF

- ⚫ Reduce the dependence of accurate **poses** for reconstruction
- ⚫ **Global** robust optimization with **geometry guidance**
- ⚫ Simultaneous point cloud **registration** and **reconstruction**

What can we do after the reconstruction?

- **Shift poses**
	- Sensor Height
	- Translation / Rotation

PRINCETON

UNIVERSITY

- **Configuration**
	- Field of View
	- Angular resolution
	- LiDAR beams
- **Dynamics**
	- Scene Re-play
	- Novel Trajectory

Original Placement

Horizontal / Vertical Displacement

Original Field of View

Enlarge / Reduce Field of View

Original Beams Increase / Decrease Beams

XXXXX

KITTI-360 LiDAR Configuration NuScenes LiDAR Configuration

Height, Beams, Range…

Novel Temporal View Dynamic Scene Re-play

Fixed Location

Novel Temporal View

Dynamic Reconstruction

Flow Optimization Pose Optimization Novel View Synthesis & Simulation

LiDAR4D [CVPR'24]

Summary

- ⚫ Representation matters
- ⚫ Minimal human supervision
- ⚫ Combine optimization, reconstruction and simulation
- ⚫ Generative priors in the future

PRINCETON

UNIVERSITY

Thank you for listening

