

**PRINCETON** UNIVERSITY

# **Reconstruction, Optimization and Simulation** of Dynamic LiDAR Point Clouds

Zehan Zheng

Dec 6, 2024



#### About Me - Zehan Zheng

- Master's Student @ Tongji University
- Research Interest: **3D Computer Vision**

Point Clouds

Neural Rendering

Dynamic Reconstruction

Generative Models

Autonomous Driving





Home Page: <u>https://dyfcalid.github.io</u>



#### **Dynamic Reconstruction**

#### Flow Optimization



#### Novel View Synthesis & Simulation



LiDAR4D [CVPR'24]

#### **Pose Optimization**















### Dynamic Point Clouds







*Some Examples!* 



# Dynamic Point Clouds

point cloud sequence  $\{P_0, P_1, \ldots, P_M\}$ ,  $P_i \in \mathbb{R}^{N \times 3}$ 

We humans can understand it easily, but computers are not

**3D Point Cloud** – *Simple and Effective* 

- Discrete
- Irregular
- Unordered
- No correspondence

Frame1: [[0.44,0.13,0.28], [0.97,0.62,0.15], [0.51,0.79,0.47], ...] Frame2: [[0.12,0.75,0.47], [0.01,0.71,0.33], [0.82,0.19,0.05], ...]







### Point Cloud Interpolation



# Challenges



- **Sparsity** both in spatial and temporal domain (limited to the sensors)
- Point Cloud Structure

cannot interpolate directly

(Irregular, unordered, and hard to find correspondences between frames)

Nonlinear Motion

cannot use one simple formula

(i.e. dynamic human / vehicle motions) \_\_\_\_



### Point Cloud Interpolation

Large amount of nonlinear complex motion in the real-world scenarios







### Point Cloud Interpolation

Given the point cloud sequence  $\{P_0, P_1, \dots, P_M\}$ ,  $P_i \in \mathbb{R}^{N \times 3}$ 



**3D** Point Cloud



We can understand because we have the **prior**:

The shape and motion are **continuous** 







- 4D (x, y, z, t) Spatio-temporal Neural Field
  - Establish mapping: Coordinate Field  $\longrightarrow$  Motion Field  $\mathbb{R}^4$   $\mathbb{R}^3$
  - Use *Interpolation Time* to control the output



**Optimization at Runtime** 



• Multi-frame Integration



**Optimization at Runtime** 



• Self-supervised Losses

Chamfer Distance Loss 
$$\mathcal{L}_{CD} = \frac{1}{N} \sum_{\hat{p}_i \in \hat{P}} \min_{p_i \in P} \left\| \hat{p}_i - p_i \right\|_2 + \frac{1}{N} \sum_{p_i \in P} \min_{\hat{p}_i \in \hat{P}} \left\| p_i - \hat{p}_i \right\|_2$$

Earth Mover's Distance Loss 
$$\mathcal{L}_{EMD} = \min_{\phi:\hat{P} \to P} \frac{1}{N} \sum_{\hat{p} \in \hat{P}} \|\hat{p} - \phi(\hat{p})\|_2$$

Smoothness Loss 
$$\mathcal{L}_{S} = \sum_{p_{i} \in P} \frac{1}{|N(p_{i})|} \sum_{p_{j} \in N(p_{i})} \left\|\Delta x(p_{j}) - \Delta x(p_{i})\right\|_{2}^{2}$$

Overall Loss  

$$\Psi = \alpha \mathcal{L}_{CD} + \beta \mathcal{L}_{EMD} + \gamma \mathcal{L}_{S}$$

$$\mathcal{L} = \sum_{P_i \in S} \sum_{t_j \in T} \Psi \left( P_{t_j}, \hat{P}_i^{t_j} \right)$$



#### • Runtime optimization



**Optimization at Runtime** 



• Runtime optimization & Inference





- $\checkmark\,$  Multi-frame point cloud interpolation algorithm
- $\checkmark\,$  Deal with both the indoor and outdoor scenarios

### NeuralPCI

PRINCETON

UNIVERSITY

- ✓ Integrate motion information implicitly over space and time
- ✓ Output point cloud frames at the arbitrary given time
- ✓ Flexible unified framework for interpolation and extrapolation





Results on DHB Dataset

**PRINCETON** 

UNIVERSITY

|   |          |    | * | 1  |    |
|---|----------|----|---|----|----|
| Я | <b>M</b> | 11 | Л | 11 | 2) |

| Methods        | Long | Longdress |      | Loot  |      | Red&Black |      | Soldier |      | Squat |      | Swing |                | Overall         |  |
|----------------|------|-----------|------|-------|------|-----------|------|---------|------|-------|------|-------|----------------|-----------------|--|
|                | CD   | EMD       | CD   | EMD   | CD   | EMD       | CD   | EMD     | CD   | EMD   | CD   | EMD   | $CD\downarrow$ | $EMD\downarrow$ |  |
| IDEA-Net       | 0.89 | 6.01      | 0.86 | 8.62  | 0.94 | 10.34     | 1.63 | 30.07   | 0.62 | 6.68  | 1.24 | 6.93  | 1.02           | 12.03           |  |
| PointINet      | 0.98 | 10.87     | 0.85 | 12.10 | 0.87 | 10.68     | 0.97 | 12.39   | 0.90 | 13.99 | 1.45 | 14.81 | 0.96           | 12.25           |  |
| NSFP           | 1.04 | 7.45      | 0.81 | 7.13  | 0.97 | 8.14      | 0.68 | 5.25    | 1.14 | 7.97  | 3.09 | 11.39 | 1.22           | 7.81            |  |
| <b>PV-RAFT</b> | 1.03 | 6.88      | 0.82 | 5.99  | 0.94 | 7.03      | 0.91 | 5.31    | 0.57 | 2.81  | 1.42 | 10.54 | 0.92           | 6.14            |  |
| NeuralPCI      | 0.70 | 4.36      | 0.61 | 4.76  | 0.67 | 4.79      | 0.59 | 4.63    | 0.03 | 0.02  | 0.53 | 2.22  | 0.54           | 3.68            |  |



#### Results on NL-Drive Dataset

| Methods   | Туре                | Frame-1 |        | Frame-2 |        | Frame-3 |        | Average |                        |  |
|-----------|---------------------|---------|--------|---------|--------|---------|--------|---------|------------------------|--|
|           | Type                | CD      | EMD    | CD      | EMD    | CD      | EMD    | CD↓     | $\text{EMD}\downarrow$ |  |
| NSFP      | forward flow        | 0.94    | 95.18  | 1.75    | 132.30 | 2.55    | 168.91 | 1.75    | 132.13                 |  |
| INSEE     | backward flow       | 2.53    | 168.75 | 1.74    | 132.19 | 0.95    | 95.23  | 1.74    | 132.05                 |  |
| PV-RAFT   | forward flow        | 1.36    | 104.57 | 1.92    | 146.87 | 1.63    | 169.82 | 1.64    | 140.42                 |  |
| Γν-καγι   | backward flow       | 1.58    | 173.18 | 1.85    | 145.48 | 1.30    | 102.71 | 1.58    | 140.46                 |  |
| PointINet | bi-directional flow | 0.93    | 97.48  | 1.24    | 110.22 | 1.01    | 95.65  | 1.06    | 101.12                 |  |
| NeuralPCI | neural field        | 0.72    | 89.03  | 0.94    | 113.45 | 0.74    | 88.61  | 0.80    | 97.03                  |  |







# NeuralPCI

Neural field is awesome!

- Convert **explicit** point clouds into **implicit** neural fields
- Reconstruct multi-frame point clouds with **unified** and **continuous** representations
- Optimize motion in a **self-supervised** manner
- Benefit from the **fitting ability** and **smoothness** of MLP



### **Limitation & Assumption**

- We assume the point clouds relatively complete
- We assume the point clouds are object-centric

# What if ...

• Incomplete and partial point clouds



Large-scale Dynamic Scene Reconstruction

• Scene-centric point clouds (world coordinate system)



# **LiDAR Point Clouds**

- LiDAR serves as the crucial sensor of autonomous driving for accurate 3D perception
- Sparsity and occlusion
- Varying at different locations and times
- Costly acquisition for a large-scale dataset
- Limited to specific sensor configuration and ego-vehicle trajectory

How can we generate/synthesize novel point clouds?





# **Previous Methods**

- Physical-based Simulation
  - × Costly 3D assets
  - × Domain gap
- Generative Models
  - × Hard to control/edit
  - × Poor generalization
- Scene Reconstruction
  - ✓ Realistic
  - ✓ Precise control









CARLA: An open urban driving simulator





(a) Sparse to Dense Point Cloud Completion

Learning Compact Representations for LiDAR Completion and Generation



LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World



### **Previous Methods**

• Scene Reconstruction

#### Differentiable Rendering



× Complicated

#### × Limited to static scenes



How to deal with dynamic scenarios?

# **Novel Space-time View LiDAR Synthesis**

PRINCETON

UNIVERSITY

#### Input

- LiDAR point cloud sequence  $S = \{S_0, S_1, ..., S_{n-1}\}$ ( $S_i \in \mathbb{R}^{N \times 4}$ , including intensity)
- sensor poses  $P = \{P_0, P_1, ..., P_M\}$  ( $P_i \in SE(3)$ )
- timestamps  $T = \{t_0, t_1, \dots, t_{n-1}\}$   $(t_i \in \mathbb{R})$

#### Output

• LiDAR point cloud  $S_{novel}$  given novel pose  $P_{novel}$ and novel time  $t_{novel}$ 







# However, challenges remain ...

- Large-scale reconstruction
  - Scenes spanning hundreds of meters
  - Representation resolution
  - Sparsity of point clouds
- Dynamic scenarios
  - Long-distance vehicle motion
  - Temporal consistency
- Generation realism
  - Intensity reconstruction
  - Ray-drop characteristic





# Method — LiDAR4D

- ✓ Differentiable LiDAR-only framework for novel space-time LiDAR view synthesis
- ✓ Geometry-aware and time-consistent large-scale dynamic reconstruction
- ✓ Better generation realism with global refinement





- **Hybrid Representation** 
  - Planes & Hash Grids •
  - **Coarse-to-fine Resolution**
  - 4D Decomposition •





LiDAR4D (w/ Hybrid Representations)



LiDAR-NeRF (Hash Grid only)

GT



#### **4D Hybrid Representation**



**Hash Grid Feature** 



- Hybrid Representation
- Scene Flow Prior
  - Flow MLP
  - Geometry-aware Constraint (Chamfer Distance)
  - Temporal Feature Aggregation







LiDAR-NeRF (point-wise ray-drop)

LiDAR4D (w/ ray-drop refinement)

GT

- Hybrid Representation
- Scene Flow Prior
- Neural LiDAR Fields
  - Separate MLPs for Depth/Intensity/Ray-drop
  - Global Optimization for Ray-drop
     Refinement via U-Net



Novel Space-time View LiDAR Point Clouds



# Experiments

SOTA Results

KITTI-360





Point Cloud Depth Intensity Method Type F-score↑ **SSIM**↑ CD↓ RMSE↓ MedAE↓ LPIPS↓ **SSIM**↑ **PSNR**↑ RMSE↓ MedAE↓ LPIPS↓ **PSNR**↑ E. / S. / M. 3.2228 0.7157 6.9153 0.6342 0.3276 0.3502 LiDARsim [25] 0.1279 0.2926 21.4608 0.1666 0.0569 15.5853 E. / S. / M. 1.8982 5.8403 0.0996 0.2752 0.6409 NKSR [15] 0.6855 23.0368 0.1742 0.0590 0.3337 0.3517 15.2081 PCGen [19] E. | S. 0.4636 0.8023 5.6583 0.2040 0.5391 0.4903 23.1675 0.1970 0.0763 0.5926 0.1351 14.1181 LiDAR-NeRF [39] I./S. 0.3831 17.1549 0.1438 0.9091 4.1753 0.0566 0.2797 0.6568 25.9878 0.1404 0.0443 0.3135 D-NeRF [32]  $\mathcal{I}. / \mathcal{D}.$ 0.1442 0.9128 4.0194 0.0508 0.3061 0.6634 26.2344 0.1369 0.3409 0.3748 17.3554 0.0440  $\mathcal{I}$ . /  $\mathcal{D}$ . 26.0267 17.3535 TiNeuVox-B [9] 0.1748 0.9059 4.1284 0.0502 0.3427 0.6514 0.1363 0.0453 0.4365 0.3457 K-Planes [12]  $\mathcal{I}$ . /  $\mathcal{D}$ . 0.1302 0.9123 0.3457 26.0236 17.0167 4.1322 0.0539 0.6385 0.1415 0.0498 0.4081 0.3008  $\mathcal{I}$ . /  $\mathcal{D}$ . 0.9272 3.5256 0.5304 18.5561 LiDAR4D (Ours) 0.1089 27.4767 0.1195 0.0327 0.0404 0.1051 0.7647 0.1845

Table 1. Quantitative comparison on KITTI-360 dataset. We compare our method to different types of previous approaches and color the top results as best and second best.  $\mathcal{E}$ : Explicit,  $\mathcal{I}$ : Implicit,  $\mathcal{S}$ : Static,  $\mathcal{D}$ : Dynamic,  $\mathcal{M}$ : Mesh.

#### • NuScenes

| Method          | Туре                              | Point Cloud |          | Depth   |        |        |        | Intensity     |        |        |        |        |               |
|-----------------|-----------------------------------|-------------|----------|---------|--------|--------|--------|---------------|--------|--------|--------|--------|---------------|
|                 | турс                              | CD↓         | F-score↑ | RMSE↓   | MedAE↓ | LPIPS↓ | SSIM↑  | <b>PSNR</b> ↑ | RMSE↓  | MedAE↓ | LPIPS↓ | SSIM↑  | <b>PSNR</b> ↑ |
| LiDARsim [25]   | E.   S.   M.                      | 12.1383     | 0.6512   | 10.5539 | 0.3572 | 0.1871 | 0.5653 | 17.7841       | 0.0659 | 0.0115 | 0.1160 | 0.5170 | 23.7791       |
| NKSR [15]       | E.   S.   M.                      | 11.4910     | 0.6178   | 9.3731  | 0.5763 | 0.2111 | 0.5637 | 18.7774       | 0.0680 | 0.0119 | 0.1290 | 0.5031 | 23.4905       |
| PCGen [19]      | E./S.                             | 2.1998      | 0.6341   | 8.8364  | 0.4011 | 0.1792 | 0.5440 | 19.2799       | 0.0768 | 0.0147 | 0.1308 | 0.4410 | 22.4428       |
| LiDAR-NeRF [39] | I./S.                             | 0.3225      | 0.8576   | 7.1566  | 0.0338 | 0.0702 | 0.7188 | 21.2129       | 0.0467 | 0.0076 | 0.0483 | 0.7264 | 26.9927       |
| D-NeRF [32]     | $\mathcal{I}$ . / $\mathcal{D}$ . | 0.3296      | 0.8513   | 7.1089  | 0.0368 | 0.0789 | 0.7130 | 21.2594       | 0.0467 | 0.0080 | 0.0492 | 0.7180 | 26.9951       |
| TiNeuVox-B [9]  | $\mathcal{I}$ . / $\mathcal{D}$ . | 0.3920      | 0.8627   | 7.2093  | 0.0290 | 0.1549 | 0.6873 | 21.0932       | 0.0462 | 0.0080 | 0.1294 | 0.7107 | 26.8620       |
| K-Planes [12]   | $\mathcal{I}$ . / $\mathcal{D}$ . | 0.2982      | 0.8887   | 6.7960  | 0.0209 | 0.1218 | 0.7258 | 21.6203       | 0.0438 | 0.0076 | 0.1127 | 0.7364 | 27.4227       |
| LiDAR4D (Ours)  | $\mathcal{I}$ . / $\mathcal{D}$ . | 0.2443      | 0.8915   | 6.7831  | 0.0258 | 0.0569 | 0.7396 | 21.7189       | 0.0426 | 0.0071 | 0.0459 | 0.7498 | 27.7977       |

Table 2. Quantitative comparison on NuScenes dataset. The notations are consistent with the KITTI-360 Table 1 above.



• More Comparisons Depth reconstruction on dynamic vehicles





More Comparisons

#### Even on small objects





• More Comparisons Also the intensity reconstruction





- More Comparisons
  - ✓ LiDAR4D achieves much better *dynamic* reconstruction results





# LiDAR4D

- Take advantages of **explicit** and **implicit** representations (hybrid one)
- Differentiable rendering for end-to-end optimization
- Geometry-aware and time-consistent reconstruction
- Without bounding box labeling of dynamic objects

· Minimal Human Supervision

Can we further reduce the need for ground-truth, e.g., the sensor poses?



### Pose-free Reconstruction

- Related works in image reconstruction
- Domain gap between images and point clouds





BARF: Bundle-Adjusting Neural Radiance Fields

NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior



# Point Cloud Registration

- Poor Generalization
- Trapped in Local Optima
- Error Accumulation





Pair-wise

Geometric Transformer for Fast and Robust Point Cloud Registration



Robust Multiview Point Cloud Registration with Reliable Pose Graph Initialization and History Reweighting

#### Multi-view



Method - GeoNLF

- Gradient flow to Poses
- Bundle Adjustment
- Global Optimization



However, optimizing the geometry and poses simultaneously is very tricky





Chamfer Distance and Normal loss of rendered point clouds



### **Method - GeoNLF**

### Introduce Geometry Guidance





### **Method - GeoNLF**



### **Pose Initialization with Random Perturbation**

(a)Nuscenes

**PRINCETON** 

UNIVERSITY

(b)KITTI-360



Initial

LiDAR-NeRF (pose-free)

Ours



### **Pose Initialization with Identity Matrix**



Initial



### **Pose-free Reconstruction (NVS)**



GeoNLF (Ours)

Geotrans-assisted

HASH-LN

BARF-LN



# GeoNLF

- Reduce the dependence of accurate **poses** for reconstruction
- **Global** robust optimization with **geometry guidance**
- Simultaneous point cloud **registration** and **reconstruction**

What can we do after the reconstruction?

- Shift poses
  - Sensor Height
  - Translation / Rotation

**PRINCETON** 

UNIVERSITY

- Configuration
  - Field of View
  - Angular resolution
  - LiDAR beams
- Dynamics
  - Scene Re-play
  - Novel Trajectory





**Original Placement** 



### Horizontal / Vertical Displacement





**Original Field of View** 



Enlarge / Reduce Field of View





**Original Beams** 



### **Increase / Decrease Beams**





#### **KITTI-360 LiDAR Configuration**



simulate

#### **NuScenes LiDAR Configuration**



FOV, Height, Beams, Range...







#### **Dynamic Scene Re-play**



#### **Fixed Location**

**Novel Temporal View** 









#### **Dynamic Reconstruction**

#### Flow Optimization



#### Novel View Synthesis & Simulation



LiDAR4D [CVPR'24]

#### **Pose Optimization**















# Summary

- Representation matters
- Minimal human supervision
- Combine optimization, reconstruction and simulation
- Generative priors in the future



**PRINCETON** 

UNIVERSITY

# Thank you for listening

